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ABSTRACT: We consider neutralino dark matter within the framework of SUSY GUTs with
non-universal gaugino masses. In particular we focus on the case of SU(5) with a SUSY
breaking F-term in the 1, 24, 75 and 200 dimensional representations. We discuss the 24
case in some detail, and show that the bulk dark matter region cannot be accessed. We
then go on to consider the admixture of the singlet SUSY breaking F-term with one of
the 24, 75 or 200 dimensional F-terms, and show that in these cases it becomes possible
to access the bulk regions corresponding to low fine-tuned dark matter. Our results are
presented in the (M7, My) plane for fixed M3 and so are useful for considering general GUT

models, as well as more general non-universal gaugino models.
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1. Introduction

Supersymmetry (SUSY) at the TeV scale remains an attractive possibility for new physics
beyond the Standard Model. SUSY helps in the unification of couplings in Grand Unified
Theories (GUTs), and provides a resolution of some aspects of the hierarchy problem.
In addition the lightest SUSY particle (LSP) may be a neutralino consisting of a linear
combination of Bino, Wino and neutral Higgsinos, providing a consistent WIMP dark
matter candidate []. For example the minimal supersymmetric standard model (MSSM)
with conserved R-parity provides such an LSP with a mass of order the electroweak scale.
Although general arguments suggest that such a particle should provide a good dark matter
candidate [J], the successful regions of parameter space allowed by WMAP and collider
constraints are now tightly restricted [-[B(].

Such a restricted parameter space has lead to recent claims that supersymmetry must
be fine-tuned to fit the observed dark matter relic density [BI]. This is a serious concern
for supersymmetry, especially as much of the motivation for supersymmetry arises from
fine-tuning arguments in the form of its solution to the hierarchy problem. In previous
work [BY-[B4] we quantitatively studied the fine-tuning cost of the primary dark matter
regions within the MSSM. It was found that the majority of dark matter regions did indeed
require some degree of fine-tuning, and that this fine-tuning could be directly related to



the mechanism responsible for the annihilation of SUSY matter in the early universe that
defined each region. The one region that exhibited no fine-tuning at all was the ‘bulk
region’ in which the dominant annihilation mechanism is via t-channel slepton exchange.
This region can be accessed in models in which the gauginos have non-universal soft masses
at the GUT scale [[f]-[R]].

These results motivate a more careful study of models that give rise to non-universal
gaugino masses. In our previous work such a region was accessed by allowing all the
gaugino masses to vary independently. Such an approach is very unconstrained. We would
expect the gaugino masses to arise from a deeper theory such as string constructions,
as studied in [B, B3, B4] or in GUT models [B-[BJ]. Both approaches generally impose
specific relations between the gaugino masses at the GUT scale. In this paper we shall
discuss non-universal gaugino masses in a more general way than previously, allowing for
different relative signs of gaugino masses, focusing on SU(5) GUTSs as an example, although
it is clear that similar effects can be achieved in other GUTSs such as SO(10) or Pati-Salam.
We shall show how the bulk region may be readily accessed in such models providing that
the SUSY breaking sector arises from a combination of an SU(5) singlet 1, together with
an admixture of one of the 24, 75 or 200 representations of SU(5). We will also show that
in all cases the fine-tuning required to access such a region remains small.

The rest of the paper is set out as follows. First we review our methodology in section .
In section f we review the structure of gaugino non-universality in SU(5). In section
we consider the specific case where all of the gaugino masses arise from a 24 of SU(5). In
section | we generalise this to the case where the masses arise from an admixture of the
singlet representation and one of the 24, 75 or 200. In section ff] we present our conclusions.

2. Methodology

2.1 Codes

The GUT structure of the theory is a structure that is imposed on the soft SUSY breaking
masses at the GUT scale, mquT ~ 2 x 1016 GeV. To study the low energy phenomenology
of such a model we need to run the mass spectrum down to the electroweak scale. To do
this we use the RGE code SoftSusy [B]]. This interfaces with the MSSM package within
micrOMEGAs [[i]]. We use this to calculate the dark matter relic density Qcpah?, as well
as BR(b — sv) and éay,.

2.2 Experimental bounds

Not all choices of parameters are equal. After running the mass spectrum of the model
point from the GUT scale to the electroweak scale we perform a number of checks. A point
is ruled out if it:

1. doesn’t provide radiative electroweak symmetry breaking (REWSB).



2. violates mass bounds on particles from the Tevatron and LEP2.!
3. results in a lightest supersymmetric particle (LSP) that is not the lightest neutralino.

In the remaining parameter space we plot regions that fit BR(b — sv) and da, at 1o
and 20.

2.2.1 day,

Present measurements of the value of the anomalous magnetic moment of the muon a,
deviate from the theoretical calculation of the SM value.? Taking the current experimental
world average, and state of the art Standard Model value from 9] there is a discrepancy:

(ap)exp — (au)sm = da, = (2.95 £0.88) x 1077 (2.1)

which amounts to a 3.40 deviation from the Standard Model value.

We use micromegas to calculate the SUSY contribution to (¢ — 2),. The dominant
theoretical errors in this calculation are in the Standard Model contribution therefore we
do not include the theoretical error in the calculation of the SUSY contribution in our
results.

2.2.2 BR(b — s7)

The variation of BR(b — s7) from the value predicted by the Standard Model is highly
sensitive to SUSY contributions arising from charged Higgs-top loops and chargino-stop
loops. To date no deviation from the Standard Model has been detected. We take the
current world average from [iJ] of the BELLE [[4], CLEO [[5] and BaBar [[i§] experiments:

BR(b — sv) = (3.55 + 0.26) x 10~* (2.2)

We use micromegas to calculate both the SM value of BR(b — sv) and the SUSY
contributions. It is hard to estimate the theoretical uncertainty in the calculation of the
SUSY contributions, but note that there is an uncertainty of 10% in the NLO SM prediction
of BR(b — sv) [A]. As with da, we plot the 1o and 20 experimental limits and do not
include a theoretical error in the calculation.

!The current LEP2 bound on the lightest MSSM Higgs stands at 114.4 GeV. However there is a theo-
retical uncertainty of 3 —5 GeV in the determination of the mass of the light Higgs [@] Therefore we take
a hard cut at mj;, = 111 GeV in our plots.

2There is a long running debate as to whether the calculation of the hadronic vacuum polarisation in
the Standard Model should be done with the eTe™ data, or the 7. The weight of evidence indicates the
eTe™ data is more reliable and we use this in our work.

$Micromegas calculates the SM contribution to BR(b — sv) to NLO. A first estimate of the SM pre-
diction of BR(b — sv) to NNLO was presented in @] This showed a drop of around 0.4 x 10™* in the
central value of the SM prediction. The implementation of the NNLO contributions in the calculation is
non-trivial and its implementation in micromegas is currently underway. As a result we do not account for
this drop in the results we present but instead note that positive SUSY contributions to BR(b — sv) look
likely to be favoured in future. This will favour a negative sign of 1 and thus cause tension with (g — 2),.



2.2.3 Qcpumh?®

Evidence from the CMB and rotation curves of galaxies both point to a large amount of
cold non-baryonic dark matter in the universe. The present measurements [d] place the
dark matter density at:

Qcpuvh? = 0.106 £ 0.008 (2.3)

For any point that lies within the 20 allowed region we calculate the fine-tuning and plot the
resulting colour-coded point. We perform the calculation of the dark matter relic density
using micromegas using the fast approximation. Given a low energy mass spectrum, this
gives an estimated precision of 1% in the theoretical prediction of the relic density. The

20 band plotted only takes into account the experimental error.*

2.3 Fine-tuning

As in [B7] we follow Ellis and Olive [p9] in quantifying the fine-tuning price of fitting dark
matter with the measure:

dIn (Qcpmh?)
0ln (a)

Q

a —

(2.4)

where the parameters a are the input parameters of the model. In this case we take them
to be the soft masses and tan 3. We take the total fine-tuning of a point to be equal to the
largest individual tuning, A = max(A,).

3. Gaugino non-universality in SU(5)

In the non-universal SU(5) model [I0], in addition to the singlet F-term SUSY breaking,
the gauge kinetic function can also depend on a non-singlet chiral superfield ®, whose
auxiliary F-component acquires a large vacuum expectation value (vev). In general the
gaugino masses come from the following dimension five term in the Lagrangian:

L=—""9)\), 3.1
MPlanck B ( )
where \; 23 are the U(1), SU(2) and SU(3) gaugino fields i.e. the bino B, the wino W
and the gluino g respectively. Since the gauginos belong to the adjoint representation of
SU(5), ® and Fg can belong to any of the irreducible representations appearing in their
symmetric product, i.e.

(24 x 24) =1+ 24+ 75+ 200 (3.2)

symm

The minimal supergravity (mSUGRA) model assumes ® to be a singlet, which implies
equal gaugino masses at the GUT scale. On the other hand if ® belongs to one of the

“Note that the quoted 1% accuracy is for a given low energy spectrum. The low energy spectrum is
obtained via softsusy and there can be some small variation in the details of the mass spectrum between
codes [@] for given high energy inputs. Different dark matter regions have different levels of sensitivity to
these variations. For a detailed study see [E] The result of the discrepancies between codes is to move the
dark matter regions slightly in the GUT scale parameter space. As we are interested in the features of these
regions, rather than their precise location, our results are reasonably insensitive to these uncertainties.



Mz M, M,
1 1 1 1
20 | 1 -3/2 —1/2
75 1 3 -5
200 1 2 10

Table 1: Relative values of the SU(3), SU(2) and U(1) gaugino masses at GUT scale for different
representations n of the chiral superfield .

non-singlet representations of SU(5), then these gaugino masses are unequal but related to
one another via the representation invariants. Thus the three gaugino masses at the GUT
scale in a given representation n are determined in terms of a single SUSY breaking mass
parameter mq /o by

M3 = Ciy3my) (3.3)

where Cl, 3 = (1,1,1), C74 3 = (-1,-3,2), CT% 3 = (-5,3,1) and Cf%3 = (10,2,1). The
resulting ratios of M;’s for each n are listed in table [ Of course in general the gauge
kinetic function can involve several chiral superfields belonging to different representations
of SU(5) which gives us the freedom to vary mass ratios continuously. In this, more general,
case we can parameterise the GUT scale gaugino masses as:

M3 = Cilg3mys (3.4)

where m?/2 is the soft gaugino mass arising from the F-term vev in the representation n.
These non-universal gaugino mass models are known to be consistent with the observed

universality of the gauge couplings at the GUT scale [B5-[B3,
az =ay =a; = a(~1/25) (3.5)

Since the gaugino masses evolve like the gauge couplings at one loop level of the renor-
malisation group equations (RGE), the three gaugino masses at the electroweak scale are
proportional to the corresponding gauge couplings, i.e.

MY = (a1 /aq) M ~ (25/60)CT'm

MW = (az/aq) Mz ~ (25/30)Cym
MPW = (ag/ag)Ms ~ (25/9)C5m] (3.6)

For simplicity we shall assume a universal SUSY breaking scalar mass mg at the
GUT scale. Then the corresponding scalar masses at the EW scale are given by the
renormalisation group evolution formulae [54)].

4. The 24 model

We have previously seen [BJ] that a ratio My : My : M3 = 0.5 : 1 : 1 allows us to access
the bulk region without violating LEP bounds. The bulk region in the CMSSM is usually



ruled out because of a light Higgs. By allowing M3 to be large we can avoid a light Higgs
while allowing M; to be light enough to give a light bino neutralino and light sleptons.
This enhances neutralino decay via light t-channel slepton exchange and gives access to
the bulk region.

From table [Il we observe that only the 24 model predicts a mass ratio M; < Ms. There-
fore we shall explore the 24 model first. For the 24 model we have the input parameters:

a € {mo, m%}Q, Ag, tan g3, sign(,u)}.

where the masses are all set as in the CMSSM except for the gaugino masses which have
the form:

M; = —0.5 mf‘}z
My = —1.5 mij,
Mg = m%}Q

With this gaugino mass structure, the bino mass in the 24 for a given my 5 is half of
the bino mass in the CMSSM for the same my /5. The bino mass also affects the running of
the slepton masses such that lower M; corresponds to a lower slepton mass. Therefore the
24 will have lower mass sleptons than the CMSSM for a given value of mg and my ,. Light
sleptons enhance the annihilation of neutralinos via t-channel slepton exchange (giving rise
to a WMAP region known as the bulk region). Therefore we expect the bulk region to
appear at larger my o than in the CMSSM and thus circumvent the Higgs mass bound.

To study this effect, we look at the (my, m1/2) plane with tan 8 = 10, Ay = 0° in both
the CMSSM and the 24 in figure [[. The CMSSM is shown in the top-left panel, the 24 with
1 positive in the top-right panel and the 24 with p negative is shown in the bottom-left
panel.

In the CMSSM scan we can see that low mg is ruled out as the stau becomes lighter
than the neutralino. Low my s, is ruled out as mj < 111GeV. The contours of 1 and 20 for
da,, (green short and long dashed lines respectively) are plotted in the remaining parameter
space, showing that the current measurement of da,, favours low mg and m; /5. Finally the
region that satisfies WMARP is plotted as a multicoloured strip that runs alongside the light
green region ruled out by a stau LSP. This WMAP strip is mostly red. This colour coding
refers to a log measure of the fine-tuning and can be read off via the log-scale on the right
hand side. The tuning of the 7 coannihilation strip agrees with our previous findings.

In the second and third panels of figure [l we once again display the (mg, m; /2)
plane but this time using the 24 model’s soft gaugino masses with p positive and negative
respectively. In both cases, low myg is ruled out by a stau LSP and low m 5 is ruled out
by a light Higgs.

The éa, and BR(b — sv) values are significantly different in the 24 model than in the
CMSSM. Firstly neither 24 plot has a region that agrees with the current measured value

SWe consider tan § = 10 exclusively throughout. This is because we are primarily interested in repro-
ducing the bulk region considered in [@] in a specific GUT model. Varying tan 8 doesn’t significantly alter
the phenomenology of the bulk region.
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Figure 1: The parameter space for the CMSSM (top-left), the 24 model with sign(u) +ve (top-
right) and with sign(u) —ve (bottom). Low my is ruled out as the 7 becomes the LSP(light green).
Low my /5 is ruled out as mj < 111GeV. In the remaining parameter space, the only strip of allowed
dark matter is a 7 — Y coannihilation strip which shows comparable degrees of tuning in all plots.

of da, (they both give da, = O(1071?)). Secondly BR(b — sv) becomes an important
constraint. For p +ve, the model agrees with the measured value of BR(b — sv) at 1o for
large m1/2(> 700 GeV) and agrees at 20 for low myo. With p —ve, only the parameter
space at mgo > 700 GeV fits BR(b — sv) at 20. Lower mg exceeds this limit.

Now consider the change in the dark matter strip. We expected to be able to access the
bulk region in this model as we would have a lighter bino neutralino and lighter sleptons
in the 24 model than in the CMSSM. This should move the bulk region to larger values of
my /o and out from under the region ruled out by the LEP2 bound on the lightest Higgs
boson.

Contrary to our naive expectations, though the bulk region has moved to larger my
in the 24 model, it remains ruled out. This is because the gaugino mass relations in the
24 also result in a lighter Higgs mass than the CMSSM, for the same mq, my/,. The only
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Figure 2: Here we show the running of A; from the GUT scale value of A; = 0 to the weak scale
for the point mg = 100GeV, my,, = 350GeV, tan 8 = 10, Ap = 0. The running for the CMSSM is
shown in blue, the running for the 24 model is shown in red.

difference between the CMSSM and the 24 model is the magnitude and sign of the M;
and M, gaugino masses. Therefore the Higgs mass must be sensitive either to the sign
difference between M o and M3 or the larger value of Ms.

First consider the effect of the relative sign between M2 and Mj3. In most RGEs the
gaugino masses appear squared, however the trilinear RGEs have the form:

dA, 1

16 13
I = 2 6’5/%’21415 + ’YbPAb + <—Q§M3 + 3Q%M2 + —Q%M1>] (4.1)

3 15

If all M; are positive, then the gauginos provide a large positive contribution to the
RGE and so help to push the trilinear negative through the running. This in turn affects
the running of the Higgs mass. In the 24 case, the sign of M o are opposite to that of M3
and so they reduce the contribution from the Gauginos and thus reduce the magnitude of
the running, resulting in a small absolute value of the trilinear coupling at the electroweak
scale. Now we note that the contribution of Mj > are suppressed relative to that of M3 by
a factor of g2, but this is partially compensated by the fact that [Ms| > |M3| at the GUT
scale. Therefore both the sign and magnitude of My(GUT) are responsible for a substantial
change in the running of the trilinears. This is shown in figure B}

The change in the trilinear affects the running of m%{u via the RGE:

dm%{u 1

3
- (3o + 24 ) | (1.2



Mass | A (1+24) B (1+75) C (1+200)
1 24 1 75 1 200
M, my g — 0.5 My | Mg = 5) Mz | M9 + 10 mis
1 24 1 75 1 200
Mo m1/2—1.5 my s m1/2+3m1/2 m1/2+2m1/2
M; m% 2t m%42 m} 2t m152 m} 2t m%Og

Table 2: The gaugino mass relations for the different (1 4+ n) SUSY breaking scenarios.

A smaller top trilinear results in a smaller running of the Higgs mass and a lighter
Higgs. Therefore, as the 24 model results in a smaller value of A; at all energies below the
GUT scale, it gives a smaller mass for the lightest Higgs than for the same model point
in the CMSSM. This means that the LEP mass bounds for the lightest Higgs are more
restrictive in the 24 model than in the CMSSM. Unfortunately, this results in the LEP
Higgs bound ruling out the bulk region for all interesting regions of parameter space of the
24 model.

5. Two SU(5) sectors

We have seen that neither the CMSSM, corresponding to a singlet SUSY breaking sector,
nor the 24 model is capable of accessing the bulk region of neutralino parameter space.
Equally, as the 75 and 200 models have |M;| > |M3|, these sectors are even worse. In this
section we therefore consider the next simplest possibility, namely that of two different
SUSY breaking SU(5) representations acting together. Indeed, once one has accepted the
existence of a single 24, 75 or 200 dimensional SUSY breaking sector, it seems perfectly
natural to allow the standard singlet SUSY breaking sector at the same time. In practice
it may be difficult to avoid this scenario.

Therefore we shall focus on the three simplest scenarios. We take the cases of a SUSY
breaking sector consisting of:

A (1+424)
B (1+75)
C (14 200)

If we were to extend our model to allow three or four SU(5) representations contributing
to SUSY breaking at once, we would be able to produce any pattern of non-universal
gaugino masses. By constraining our model to two sectors we provide restrictions on the
choice of gaugino masses which makes access to the bulk region non-trivial, and provides
insight into what ingredients are required to achieve it.

Within these models, we have different gaugino mass relations, shown in table. f. By
1n

varying the soft gaugino masses m; /2

we describe three planes in the M 3 parameter
space.

Our aim is to access the bulk region. In [BJ we found that the bulk region can be
accessed in a model with non-universal gaugino masses for mg = 50 — 80 GeV. Therefore

we fix mg = 70GeV, Ay = 0 and tan 3 = 10. In figures fJ(a)-(d) we plot the (M, Ms)
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Figure 3: The (M;, M,) plane with non-universal gaugino masses defined at the GUT scale.
We take mg = 70GeV, Ag = 0 and tan 8 = 10 throughout vary Ms: (a) M35 = 300GeV, (b)
Mz = 400GeV, (¢) M3 = 500GeV, (d) M3z = 600GeV. For fixed M3, the allowed parameter
space for each GUT mixture is plotted as a line the (M, Ms) parameter space. The WMAP
allowed regions correspond to the elliptical regions in each quadrant, and are partially obscured
by disallowed regions in panels (a) and (b). The BR(b — sv) and da,, regions are displayed as in
figure [I| and discussed in the text.

plane for increasing values of Ms, from 300 — 600 GeV. As M; and M5 can in general be
either positive or negative in (1 4+ n) scenarios, we allow M; and M; to take positive and
negative values. For a given Mjs, the gaugino mass relation of table f| constrain each of the
(1 + n) scenarios to a line in the (Mj, Ms) plane. We plot these lines for each case.

As each model has the singlet representation as a limit when mf 12— 0, all the lines

~10 -



Parameter Al A2

value | A9 value | A%
mo 70 1.43 | 70 0.96
mbz 33.3 0.026 | 100 0.39
mil, 466.7 | 0.075 | 500 | 1.02
Ag 0 0 0 0
tan 10 0.37 | 10 0.21
Max 1.43 0.96
My -200 0.19 | -150 | 0.59
Moy -666.7 | 0.21 | -650 | 0.38
Ms 500 0.075 | 600 0.0088

Table 3: The fine-tuning for points A1 and A2 that lie within the bulk region for the (1+24) model.
For both points m%‘/lQ > m% /29 50 the gaugino masses arise predominantly from the 24. In the lower
section of the table we give the corresponding GUT scale M; for each point. As the tunings plotted
in figure E are calculated with respect to the parameter set a € {mg, My, Ms, Ms, Aoy, tang},
we give the relevant tunings with respect to the individual M; for comparison.

converge at a point. At this point the model is precisely that of the CMSSM, and as such
is ruled out for almost all M3 by a 7 LSP or the LEP bound on the lightest Higgs. The
other end of each line corresponds to the opposite limit m% /2= 0, m} 19 = Ms.

We also plot the BR(b — sv) and da, constraints. The only region that doesn’t fit
BR(b — sv) within 20 is panel (a) at large My. The values of da,, are insensitive to M3. In
the quadrant with M7 and Ms +ve we have the largest SUSY contribution to da,, enabling
the model to fit da, at 1lo. In the quadrant with M; +ve, Mj -ve, the model can fit da,
at 20. For negative M; we get a negative SUSY contribution, da,. If we were to plot the
parameter space with p negative, da,, would have the opposite sign and the model would
fit the observed value of da, for negative M.

Finally, we plot the dark matter regions with colours corresponding to their fine-
tuning calculated with respect to the general non-universal gaugino model with parameters:
a € {mgy, My, My, M3, Agy, tan}. This allows us to easily pick out the bulk region as
it is ‘supernatural’ with A < 1 and is therefore plotted in yellow. We use this to pick out
the points at which each (14 n) representation provides access to the bulk region. We take
these points and calculate the dark matter fine-tuning with respect to the (1 + n) model
in question.

First consider the 1+ 24 model. In figures J(a), (b) the model does not access the bulk
region. This fits with our results of section | as low m; 5 is ruled out by a light Higgs in
the 24 scenario. In figures fJ(c), (d), we can access the bulk region with a mixture that is
primarily 24. We show the corresponding fine-tuning for both points in table . Note that
for both points m%‘}Q > m% /2> SO the gaugino masses arise predominantly from the 24.

Next consider the 1+ 75 model. This model lies along the blue short dashed line. The
75 limit is not shown. This is because in the pure 75 scenario M; = —5Ms;. Therefore

— 11 —



Parameter B1 B2 B3 B4
value | A% value | A% value | A% value | A%
mo 70 0.91 | 70 1.18 | 70 0.86 | 70 1.0
mbz 217 0.78 | 300 0.64 | 363 1.4 387 1.1
miJ, 83.3 | 1.4 |100 |091 |36.7 |0.67 |113 |15
Ag 0 0 0 0 0 0 0 0
tan 10 0.13 | 10 0.29 | 10 0.14 | 10 0.32
Max 1.4 0.91 14 1.5
My -200 | 0.66 | -200 | 0.38 | 180 0.67 | -180 | 0.51
Mo 467 0.086 | 600 0.032 | 473 0.096 | 727 0.075
Ms 300 0.13 | 400 0.071 | 400 0.061 | 500 0.047
Parameter | B5 B6 B7
value | AY value | AY value | AY
mo 70 0.75 | 70 0.95 | 70 0.84
m%/Z 450 1.8 475 1.7 530 2.0
miJ 50 099 | 125 |24 |70 1.2
Ay 0 0 0 0 0 0
tan G 10 0.15 | 10 0.32 | 10 0.22
Max 1.8 2.4 2.0
M 200 0.80 | -150 | 0.55 | 180 0.64
My 600 0.038 | 850 0.082 | 740 0.031
Ms 500 0.014 | 600 0.16 | 600 0.12

Table 4: The fine-tuning for points B1-7 that lie within the bulk region for the (14 75) model. For
all points mz% < m} /27 SO the gaugino masses arise predominantly from the singlet. In the lower
section of the table we give the corresponding GUT scale M; for each point. As the tunings plotted
in figure E are calculated with respect to the parameter set a € {mg, My, Ms, M3, Ag, tan(3},
we give the relevant tunings with respect to the individual M; for comparison.

the 75 limit lies outside the range plotted for all M5 that we consider. In such a limit, as
studied in [§, [Ld], the lightest neutralino is predominantly higgsino. As discussed earlier
we cannot access the bulk region in such a limit. This limit lies off the plots and we do not
consider it further here.

In the 75, My is negative. This results in two scenarios in which My < Mj3. For a small
mz%, the negative contribution results in a small, positive, M;. For a slightly larger mz%,
we get a small, negative M;. This is shown in the plots and is the reason that the 1 + 75
accesses the bulk region twice for most values of M3, once for each sign of M;. We study
the 7 resulting points in the bulk regions in table []. Note that for all points mﬁz < m% /25
so the gaugino masses arise predominantly from the singlet.

Finally consider the case of the 1 + 200 model. The lines corresponding to this model
are plotted in red with long dashes. As in the 1 4+ 75 case, in the 200 limit the lightest
neutralino is higgsino and we cannot access the bulk region. This limit lies off the plots
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Parameter | C1 C2 C3

value | A? | value | A? | value | AY
mo 70 1.6 |70 0.89 | 70 1.1
ml, 467 | 011|424 | 1.7 | 576 |14
m3) -66.7 | 0.40 | -24.4 | 0.93 | -75.6 | 2.2
Ag 0 0 0 0 0 0
tan 3 10 0.79 | 10 0.25 | 10 0.54
Max 1.6 1.7 2.2
M,y -200 | 0.19 | 180 0.67 | -180 | 0.56
M, 333 0.83 | 376 0.31 | 424 0.59
Ms 400 0.75 | 400 0.22 | 500 0.39
Parameter | C4 Ch C6

value | AY | value | A? | value | AY
mo 70 0.78 | 70 0.97 | 70 0.86
m%/g 533 2.3 | 683 2.3 | 647 2.5
m3) -33.3 | 1.3 |-833 | 3.1 |-46.7 | 1.7
Ap 0 0 0 0 0 0
tan 3 10 0.23 | 10 0.43 | 10 0.25
Max 2.3 3.1 2.5
M,y 200 0.80 | -150 | 0.59 | 180 0.63
M, 467 0.25 | 517 0.49 | 553 0.22
Ms 500 0.13 | 600 0.20 | 600 0.047

Table 5: The fine-tuning for points C1-6 that lie within the bulk region for the (1 + 200) model.
For all points [m3)5] < |mj ,|, so the gaugino masses arise predominantly from the 1. We also give
the corresponding GUT scale M; for each point. As the tunings in figure E are calculated with
respect to the parameters a € {mg, My, Ms, M3, Ap, tan(3}, we give the tunings with respect to
M; for comparison.

and we do not consider it further here.

As the 200 has all gaugino masses positive, and large My, we cannot access the bulk
region in the 200 limit. However by combining with the singlet we can get |M;| < |Mj]
by taking a small, negative mf(/)g. This allows such a model to access the bulk region for
positive and negative small M;. We study the resulting 6 points in the bulk region in
table [f.In all points \m%(/]g] < |mj /2\ so the gaugino masses arise predominantly from the 1.

The hierarchy of the weak scale SUSY spectrum is fairly stable for all the points shown
in Fig f. Table [ lists the neutralino, chargino and sfermion masses along with Mj, Ms
and the Higgsino mass parameter p for the point B5 as an example. In contrast to the
CMSSM the bino is lighter than the wino by a factor of 6. Correspondingly the right
and left slepton masses are split by a large factor. The small value of mg also ensures
that the right handed sleptons are considerably lighter than the wino. Hence a large
fraction of wino decay is predicted to proceed via 7y, resulting in one or more tau leptons
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Particle Mass (GeV)
1) (bino) 78.1
Y (wino) 457

% (higgsino) | 614

%Y (higgsino) | 636
X (wino) 461
X4 (higgsino) | 635
MEW 81
MEW 470
MEW 1120

W 611

i 1150
71 104

7o 399
Ry iR 115
ér, i, 399

t 793

to 1025
by 980

bo 1000
d12.R ~ 1005
q1,2,L ~ 1070

Table 6: The SUSY mass spectrum of point B5 from figure . This spectrum is characteristic of
all bulk region points we have studied. We display the hierarchy and flavour of the neutralino and
chargino sectors. We also display the values of the neutralino mass parameters for completeness.
For the squarks we take a typical squark mass rather than list the full squark spectrum. The
exceptions are the 3rd family squarks that we list separately. Finally, the sneutrinos are degenerate
with é, [J,L.

in the final state in addition to the missing-Ep. Though the light selectron and smuon
have negligible left-handed components, and so cannot take part in the wino decay, the
heavier selectron and smuon are still lighter than the wino in all points we consider. A
wino decay via a left-handed selectron/smuon would give a distinctive signal in the form
of hard electron(s)/muon(s) in addition to the missing-E7. Thus one expects a distinctive
SUSY signal from squark/gluino cascade decays at LHC containing hard isolated leptons
in addition to the missing-FE7 and jets.

We have focused on the low mq, my/, region of the parameter space in this study.
This is not to say that only the low mq, m,/, region is allowed. (g — 2), favours low mq
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and my /5, but there are no hard bounds that limit us to this corner of parameter space.5

Instead, we have focused on this region because it has allowed us to examine the bulk
region we found in [BJ] in the framework of a specific GUT model, and found that the
GUT model provides a mechanism for accessing such a region with low tuning.

6. Conclusions

In previous work we found that a model with non-universal gaugino masses could access the
bulk region in which t-channel slepton exchange alone could account for the observed dark
matter relic density. The bulk region is an attractive prospect as it allows SUSY to account
for the observed dark matter relic density without any appreciable fine-tuning. However, a
model with entirely free gaugino masses is very unconstrained. Such non-universality must
arise from a deeper structure and such structures should impose restrictions on the precise
form of the gaugino masses at the GUT scale.

In this paper we have considered neutralino dark matter within the framework of SUSY
GUTSs with non-universal gaugino masses. We have taken the specific case of an SU(5) GUT
model where the gaugino masses arise from different irreducible representations of the
symmetric product of the adjoint representations. In particular we focused on the case of
SU(5) with a SUSY breaking F-term in the 1, 24, 75 and 200 dimensional representations.
We discussed the 24 case in some detail, and showed that the bulk dark matter region
cannot be accessed in this case. In general if we just take the simplest case in which the
gaugino masses arise from only one representation, we find that as far as achieving the
bulk region is concerned, there is no advantage over the CMSSM. This is in part due to the
surprising result that the sign and magnitude of My with respect to M3 has an important
effect on the lightest Higgs mass through its effect on the top trilinear.

We then went on to consider the case of the singlet SUSY breaking F-term combined
with an admixture of one of the 24, 75 or 200 dimensional F-terms. Such a scenario is
natural once we allow the higher dimensional representations in our theory. In all these
cases we showed that it becomes possible to access the bulk regions corresponding to low
fine-tuned dark matter. In addition, the degree of fine-tuning required to access the bulk
region remains small in the GUT models. Therefore we conclude that such models can
access the bulk region and naturally account for the observed dark matter relic density.

Finally we note that the results in figure f are presented in the (Mj, Ms) plane for
fixed M3 and so are useful for considering general GUT models, as well as more general
non-universal gaugino models. The hierarchy of weak scale SUSY spectrum is fairly stable
for all the points shown in figure f|. Both the right and left sleptons are lighter than the
wino, implying a large leptonic BR of wino decay. This promises a distinctive SUSY signal
from squark/gluino cascade decays at LHC in the form of hard isolated leptons in addition
to the missing-F7 and jets.

5The fine-tuning required for REWSB is also minimised by keeping mo and m, /2 small. We do not
provide details of the electroweak tuning here but we have checked that it remains similar to that of the
non-universal gaugino model presented in [@]
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